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Abstract

This report outlines an approach for computing the uncertainties in the predictions of
computationally expensive models. While general, we use ParaDiS , a dislocation dy-
namics simulator originating in Lawrence Livermore National Laboratory, as the target
application. ParaDiS is a mesoscale model, and uses submodels constructed/upscaled
from microscale (molecular statics and dynamics) simulations. ParaDiS outputs, in
turn, are upscaled and used in continuum (macroscale) simulations, e.g., those per-
formed by ALE3D. This report addresses how one may quantify the uncertainties
introduced by upscaling (both from microscale to mesoscale, and mesoscale to con-
tinuum), and the dependence of uncertainties in ParaDiS predictions on those of the
inputs. This dependence is established via sensitivity analysis, and we address how
this may be performed with a minimum of ParaDiS runs, given its immense computa-
tional cost. This includes constructing a smaller version of the model, sparse sampling
of the parameter space, and exploiting the asymptotic nature of the time-evolution
of the model outputs. The report concludes with a discussion of the computational
resources required to perform this uncertainty quantification study.
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An approach for estimating the
uncertainty in ParaDiS predictions

1 Introduction

This report outlines an approach by which one can quantify the uncertainty in the predic-
tions of a computationally expensive model, due to uncertainties in its inputs. The model is
also high-dimensional in its input parameter-space, and some of its inputs are expected to
be correlated, if aphysical situations (which the model cannot address) are to be avoided.
In this report, we describe how the uncertainties in the input parameters may be modeled
as well as a method for constructing a computationally inexpensive surrogate model for
performing the uncertainty quantification (UQ) study.

The model in question is ParaDiS [2], a simulation code for dislocation dynamics (DD).
It is currently being developed by, among other institutions, Lawrence Livermore National
Laboratory (LLNL). The UQ study is complicated by the manner in which ParaDiS is
used - it serves as a mesoscale model in a multiscale upscaling chain, whose final product
(an upscaled model) is used as a constitutive submodel in continuum simulations. In this
multiscale upscaling chain, molecular dynamics (MD) simulations are used to create a
model for the stress σe required to move an isolated crystal dislocation with velocity v,
at a given temperature T . The MD data is fitted with an algebraic model, which we will
refer to as the first upscaling model, M1 . The parameters of M1 can be best described as
random variables with a distribution characteristic of the fit of M1 to MD data. DD models
the interaction of dislocations in a single crystal, including creation and annihilation of
dislocations, leading to high-strain rate behaviors as well as strain hardening. ParaDiS
outputs consist of the evolution of dislocation density over time under an applied stress (or
strain rate). The dislocation density evolution is, in turn, modeled and used as a constitutive
model in continuum simulations (e.g., in ALE3D [3]). We call this the second upscaling
model, M2 . The upscaling itself introduces uncertainties, even if ParaDiS input were
known with absolute certainty. An example of ParaDiS being used as a part of a multiscale
chain of tools can be found in [1]. DD thus acts as a bridge between MD and the continuum
scale.

In our work, we will focus on the final predictive uncertainties in M2 , due to uncertain-
ties in the parameters of M1 , the shortcomings of M2 itself as a representation of Par-
aDiS outputs, as well as artifacts introduced into ParaDiS simulations due to numerical
errors/approximations. We will focus solely on tantalum (Ta) as the material of choice. We
will assume that the upscaling tool-chain and the use-case is identical to the description
in [1].

The inputs to ParaDiS can be divided into four classes:
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• Type I parameters: Conventional parameters, that have a nominal value and an uncer-
tainty about them. ParaDiS has 8 such parameters (pois, burgMag, YoungModulus,
rc, MobClimb, MobLine, MobGlide, MobPieirls). These can be modeled as
being independently distributed.

• Type II parameters: These are “operational” parameters, i.e. parameters that are
varied to obtain ParaDiS outputs over a space where (a) ParaDiS is applicable and
(2) where ALE3D needs its constitutive law to be evaluated. The 3 parameters are
T , the temperature, ε̇, the strain rate and G, the shear modulus, being a proxy for
pressure.

• Type III parameters: ParaDiS uses a constitutive law (the upscaling model M1 )
σe = f (v,T ;~p) in it, which relates the stress required to move an isolated dislocation,
with velocity v, at a temperature T . ~p are the parameters of M1 . This model is
obtained by fitting to MD data. Due to shortcomings of the functional form of the
model, and jitter in the MD data, there is considerable uncertainty in the values of the
model parameters. Typically, one represents the MD data as σdata

e = f (v,T ;~p)+ η,
where the uncertainties on (~p,η) have to be obtained. η, in turn, has to be modeled
(e.g., η ∼ N(0,σ2

o), but a joint distribution on (~p,σo) could be obtained. This joint
distribution has to be honored when performing a parametric UQ study on ParaDiS
i.e., these parameters should not be modeled as independently distributed. There can
be up to 9 such parameters (a more probable number is 6).

• Type IV parameters: Numerical parameter, governing convergence, time-step, order
of FM expansions etc. Ideally, ParaDiS outputs should be independent of numerical
settings (convergence with respect to grid etc, for a proper run), but we will have
to estimate these sensitivities, for reasons discussed in Sec. 4.4. These are maxDT,
deltaTT, nextDT, dtIncrementFact, dtDecrementFact, dtExponent,
dtVariableAdjustment, rTol, rmax, splitMultinodeFreq, fmMPOrder,
fmTaylorOrder - 12 in all.

ParaDiS has many outputs (predictions); however, only the following are of interest to us:

• Dislocation density versus time. This is a function of the strain rate ε̇. This output
is fitted with an upscaling model (M2 ; Eq. 11 in [1]), and used in continuum simu-
lations. The upscaling model is fitted only when the metal begins to display plastic
behavior. We are interested in quantifying the uncertainty in the fitted-model’s pre-
dictions, due to shortcomings of the fit to data from a particular ParaDiS run and the
uncertainty in ParaDiS outputs, due to uncertainties in its inputs.

• The stress-strain relationship. This is used to identify the plastic region, prior to
fitting the upscaling model described above.

In this report, we will address the following issues:
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• Examine the distribution of Type III parameters: We will examine distribution of ~p in
the dislocation velocity model σe = f (v,T ;~p), by fitting to MD data. Typically, one
obtains point estimates of these parameters. Instead, we will focus on the identifia-
bility of the six parameters that constitute ~p i.e., whether the posterior distributions of
the parameters, after fitting the model to MD data, differ appreciably from the prior.
Those parameters that cannot be identified (i.e., the MD simulations are insensitive
to their variation) can be safely set to a constant and removed from any UQ study.

• Construct a “mini” version of ParaDiS , that can be run quickly: A typical ParaDiS
run takes O(107) CPU-hours; thus we cannot use ParaDiS as-is in our UQ study. We
seek to construct a “mini” version that can be completed in approximately O(105)
CPU-hours, so that it may be run repeatedly within the context of our study. We
seek to achieve this by reducing the domain size as well as curtailing the number
of timesteps run. However, this number has to be large enough such that (1) the
numerical experiment displays plastic behavior (a strain of about 2–5%) and (2) the
evolution of dislocation density over time attains the asymptotic behavior character-
istic of saturation. The last is required so that we may fit the upscaling model M2
.

However, construction of a “mini”-ParaDiS will lead to numerical errors and con-
sequently the effect of Type IV parameters on the model outputs will have to be
characterized.

• Sampling design: We will outline how one may sample the (8 + 3 + 9 = 20) dimen-
sional space (Type I, II and III parameters) using “mini”-ParaDiS . We expect that the
examination of the identifiability of Type III parameters may yield a modest reduc-
tion in parametric dimensionality, but the bulk of the parametric study will involve
sparse sampling. Which methods may yield a successful outcome will be discussed
and shortlisted in this report.

• Upscaling model M2 : The upscaling model M2 (Eq. 11 from [1]) provides a func-
tional form that can be fitted to data. However, the discrepancy between ParaDiS and
M2 cannot be modeled as noise (ParaDiS outputs are noiseless) and we will identify
a probabilistic modification of M2 that serves to bridge the discrepancy.

In Section 4, the report will present preliminary results on three of the issues mentioned
above, indicating that their solution is eminently feasible. For the fourth component, sam-
pling design, will be reviewed (in Section 2); however, no preliminary results will be pre-
sented. They form major components of an UQ study of ParaDiS . We will end this report
with an outline how these components can be integrated to execute an UQ of ParaDiS .
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2 Literature review

As mentioned in Sec. 1, the key to performing an UQ study on ParaDiS is to estimate
the uncertainties in Type III parameters (which govern M1 ) as well as the uncertainties
incurred when ParaDiS results are upscaled/fit using M2 . These uncertainties due to model
fitting can be assessed if one uses Bayesian calibration. In this section, we review some of
the methods, and some past work that may be useful for our purposes.

UQ analysis of ParaDiS , which will require multiple model evaluations, is intractable using
ParaDiS as-is; instead, we will take recourse to a computationally inexpensive surrogate. A
surrogate model is created by sampling the parameter space sparsely, and “fitting” a func-
tional form. We will also review sampling methods and surrogate models in this section.

An UQ approach that allows one to map uncertainties in input parameters to uncertainties
in model prediction, via a surrogate model, essentially creates a probabilistic (surrogate)
simulator. This approach can be used to test the change in ParaDiS ’s predictive skill if its
submodels e.g. M1 were to be replaced by a competing one. The new submodel would have
different parameters with different levels of uncertainties. Being able to select between
competing submodels would be a use of the approach being described here. We will review
how model selection may be performed in a probabilistic manner, given experimental data.

2.1 Bayesian calibration and model selection

Model calibration is commonly thought of as the manipulation of model parameters so that
model predictions may match measurements (from the field or laboratory experiments).
Typically this is done via an optimization procedure, where a cost function (usually the L2
norm of the data - model mismatch) is minimized. In Bayesian methods, this mismatch
is modeled (often by assuming that individual mismatches are uncorrelated and further-
more, are distributed per a Gaussian). Thus, given a proposed set of parameter of values,
one can calculate the mismatch; then, per the error distribution model, one can calculate
the likelihood of observing that error, and by extension, the chosen set of parameters. If
there are any prior beliefs regarding the choice of parameters (a probability distribution
over the parameter space), the likelihood can be modified accordingly. Per Bayes theo-
rem, this is proportional to the posterior distribution on the parameters, conditional on
the observations. For more information on such a statistical/probabilistic formulation of a
parameter-estimation problems (or Bayesian inverse problems), see [4].

The posterior distribution cannot be evaluated in a naı̈ve manner e.g., by gridding up the
parameter space (which in our case is 20-dimensional). Instead one samples from it (ob-
taining samples from the parameter space) and bins (histograms) them to illustrate the ge-
ometry of the posterior distribution. The sampling is performed using Markov chain Monte
Carlo (MCMC) methods which are described in [5]. In particular, for our work, we will use
an adaptive MCMC method called DRAM [6]. Adaptive MCMC reduces the number of
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samples required to obtain a “converged” a posterior distribution, especially if it has a com-
plex, contorted geometry. The samples drawn from a posterior distribution can be used to
construct a response surface model of the posterior distribution. Fitting high-dimensional
response surfaces to a cloud of points will be discussed in Section 2.2 within the context of
surrogate models.

One of the uses of an approach to generate probabilistic surrogate models for ParaDiS is to
be able to discriminate between competing submodels e.g., for dislocation mobility (M1 ),
that might be implemented in ParaDiS . The competing submodels will have different pa-
rameters, with different posterior distributions. These, in turn, will lead to a corresponding
distribution of predictions of dislocation density evolution. In the event laboratory data is
available, the question arises how one may discriminate between the competing submodels.

For this purpose, we borrow ideas from Bayesian model selection. Given samples from the
posterior distribution, one may simply calculate the Deviance Information Criterion for the
competing versions of ParaDiS [7]. Alternatively, one may calculate various goodness-of-
fit metrics e.g. cumulative rank predictive score, that are defined on the predictive skill of
an ensemble of predictions with respect to observations. There definitions and implications
can be found in [8, 9]. Finally, samples from the a distribution of ParaDiS parameters can be
used to discriminate between competing version of ParaDiS (if experimental observations
are available) using Bayes factors [10]. The surrogate model for ParaDiS will be required
for the high-dimensional integrations involved in the calculation of Bayes factors.

2.2 Surrogate models

Surrogate models are computationally inexpensive analogs of expensive computational
models. These surrogates approximate one (and sometimes more) outputs of a model as a
function of model inputs. The surrogate models, sometimes also called response-surface
models, typically do not have any scientific/phenomenological arguments underlying their
construction and can be likened to “curve-fitting”. The primary issues involved during sur-
rogate model construction are (1) minimizing the number of expensive-model evaluations
to generate the data to which surrogates are fit (generally accomplished with some kind of
sampling) and (2) minimizing the difference between predictions/outputs of the expensive
model and its inexpensive surrogate. Descriptions of the issues involved in generating sur-
rogates can be found in [11, 12, 13, 14]. Surrogate models are popular in inversion and
optimization studies since those studies involve repeated evaluation of models for different
parameter values.

One of the ways of constructing a surrogate for ParaDiS is to use polynomial chaos (PC)
expansions to model its outputs, as a function of its inputs. The polynomial chaos (PC)
was defined first by Wiener [15], and it since has found a significant number of applica-
tions in a number of engineering fields [16, 17, 18, 19, 20]. This approach consists of
approximating a generic random variable in terms of standard random variables through a
spectral polynomial expansion. In the context of this report, dislocation density evolution
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(or proxies thereof) will be cast as random variables that are functions of uncertain in-
put parameters. These spectral approximations can be constructed using a relatively small
number of ParaDiS evaluations, and can accurately represent smooth input-output depen-
dencies. If ParaDiS is seen to exhibit non-smooth behavior, several domain partitioning
methods are available [21, 22, 23]. This generates a series of sub-domains where models
have a smooth behavior, thus enabling the use of efficient spectral approximations in each
region. Alternatively, if ParaDiS outputs were to display smooth, near-stationary behavior,
with few localized areas of large gradients, surrogate model methods based on Gaussian
processes (or treed Gaussian processes) could be used to create surrogates [12, 13, 24, 25].

Marzouk et al. [26] proposed using surrogate models based on PC expansions in order to
accelerate Bayesian inferences. This approach was followed by several authors in a wide
range of scientific fields; for source and parameter estimation in porous media [27, 28],
analysis of supersonic combustion [29], and stochastic data assimilation [30]. A use of PC
surrogates in global sensitivity analysis is in [31].

2.3 Sparse sampling

If a one-dimensional function f (x) needs to be integrated, it is sufficient to evaluate it at Q
quadrature points; this will yield an exact answer for a polynomial f (x) of order 2Q−1 or
less (for Gaussian quadratures). The set of quadrature points forms a 1D grid; trapezoidal
or Simpson’s rules are quadrature grids. p = 2Q− 1 is referred to as the precision of the
grid. In case the function is extended to higher dimensions e.g. f (x1,x2, . . .xd), the 1D grid
can be naı̈vely replicated in d dimensions, leading to Qd grid-points. Within the context of
an expensive f (x), evaluating the function at each grid point becomes intractable. Sparse
Clenshaw-Curtis (CC) grids and other sparse quadrature methods become relevant in such
a context.

Sparse grids date back to Smolyak [32], whose work serves as a starting point for efficient
methods of high-dimensional quadrature construction based on uni-dimensional rules [33,
34, 35]. For details of the construction, see [36, 37]. Sparse grids are composed of levels,
with each level L consisting of a set of points unevenly distributed in space. The spacing
between points is decided by a 1D formula. If one desires a higher precision, a new level,
with a larger number of points is added; p = 2L−1. Table 1 shows the growth of precision
p and number of grid-points N as more levels are added. We see that a L = 5,d = 10 CC
grid contains almost 9,000 points, and has a precision of 9. Note that the highest-order
polynomial that can be integrated exactly on a d-dimensional, L level grid is xq1

1 xq2
2 . . .xqd

d ,
where ∑

d
k=1 qi = p = 2L−1. For an L = 5,d = 10, which would be clearly intractable with

ParaDiS , we would not be able to go beyond 5th order terms. Since we expect terms of
the form xix jxk . . ., it is thus clear that a significant reduction of the parameter space will
be required to perform an UQ study of ParaDiS if its outputs display complex/high-order
dependencies on input parameters.
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Table 1. The number of Clenshaw-Curtis sparse grid quadrature points for various levels and
dimensionalities. As a comparison, a product grid with only 4 points per dimension in 10-d consists
of 410 > 1000000 points.

Level Precision N N N N(d)
L p = 2L−1 (d = 2) (d = 5) (d = 10) General
1 1 1 1 1 1
2 3 5 11 21 1+2d
3 5 13 61 221 1+2d +2d2

4 7 29 241 1581 1+ 14
3 d +2d2 + 4

3d3

5 9 65 801 8801 1+ 20
3 d + 22

3 d2 + 4
3d3 + 2

3d4

6 11 145 2433 41265 · · ·
7 13 321 6993 171425 · · ·
8 15 705 19313 652065 · · ·
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3 Description of the model

ParaDiS is a computational model, being developed in LLNL, that computes the interaction
of crystal dislocations with each other when a crystal of metal is subjected to a strain-rate.
Pressure and temperature, during a ParaDiS run, are held constant. Fundamentally, as the
metal deforms elastically, the crystal planes move reversibly. As the material passes into
plasticity, dislocations are born and the deformation becomes irreversible (and the strength
drops). Both screw and edge dislocations are modeled. Screw dislocations are modeled in
detail and the contributions to the model outputs, due to edge dislocations, is simply taken
as a fraction of the contributions by screws [1]. As the imposed strain rate continues to
deform the material, the dislocation density increases and the dislocations themselves start
interacting with each other and resisting the strain i.e., a larger stress is imposed to keep
the strain-rate constant. This increase in material strength is called strain-hardening and
plays an important part in the the functioning of metal devices under extreme pressures and
temperatures.

The interaction of dislocations with each other is facilitated by the stress field, and the
movement of dislocations is far slower than the rate at which the stress field propagates in
the material (i.e., it is an elliptic problem). The dislocation evolution problem is addressed
using a Fast Multipole Method (FMM). Details of the numerical method are in [38]. Prob-
lems of physical interest tend to be enormous and it is the model’s weak scalability that is
exercised in parallel computing. The weak-scalability is quite impressive.

The kind of physics simulated by ParaDiS – dislocation dynamics – functions at the mesoscale
level. It is far coarser than molecular statics and dynamics, and expects certain constitu-
tive models to be computed a priori from such simulations. These molecular simulations
address the evolution (movement/velocity) of a single dislocation under various degrees
of applied stress, at a fixed (extreme) pressure and temperature. DD, in turn, simulates
processes that involve interactions between dislocations and reproduces the stress–strain
relationship in a solid, as well as the temporal evolution of dislocation density and dislo-
cation flux under an applied strain rate (the former rises to an asymptotic limit; the latter
displays a rise and a fall, before settling to a constant). Thus DD forms a step in a multiscale
chain of models, stretching from molecular statics (used to calculate activation energies of
dislocations), to dislocation mobilities as a function of stress (molecular dynamics), which
then feeds these “constitutive” relations into DD. The output of DD, properly upscaled,
informs continuum models. This entire chain, along with illustrative examples, has been
discussed in [1].

The ParaDiS code is freely downloadable [2], however, most modifications of DoE ASC
(Advanced Simulation and Computing) interest e.g., models specific to extreme pressures,
temperatures and relatively exotic metals (tantalum, vanadium etc) are only available in the
LLNL version of the model. The model has not been cleared for public release.

ParaDiS simulates DD in a 3D box. Typically, the box-size is 5− 10µ. Each simulation
was run on 4,000–16,000 CPUS on the Blue Gene/L, and simulations required to meet
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an ASC L2 milestone consumed about 200 million CPU-hours, primarily because of the
large strains (i.e large number of timesteps) that had to be achieved. Consequently, such
a problem configuration is not really suitable for repeated runs, as would be needed for
uncertainty quantification. The restriction comes from the number of dislocations that arise
under an imposed strain rate, which requires one to restart the problem on a larger number
of processors. Also depending on the model used to relate dislocation velocity to imposed
(local) stress, the timestep can drop to around 10−12 seconds, requiring O(105) timesteps to
calculate physically useful outputs. Smaller problems (2µ box-size) are possible but show
oscillations in model output (stress-strain curve, dislocation density and flux as a function
of time etc) as the perturbations circulate in the domain (under periodic boundary condi-
tions), slowly attenuating by energy dissipation due to friction and PdV work. Increasing
the domain size allows the energy dissipation to occur over a larger volume and decreases
its impact on dislocations. All ParaDiS outputs are averages over the box-volume; thus
averages over a larger number of dislocations also result in a cancellation of fluctuations
and a smoother output.

3.1 The inputs

ParaDiS obtains inputs on dislocation mobility (velocity of a dislocation as a function of
the local stress) from molecular dynamics simulations. The model is formulated as

σe = M(τ∗(v,θ)τp(p)+ τ̂(ρ, p)+ τa)

where v is the dislocation velocity, θ is the temperature in Kelvins, p is the pressure (above
atmospheric pressure), ρ is the dislocation density and τa is a constant, which is small for
certain materials (e.g., vanadium and tantalum) as it is related to the grain structure. This
equation is Eq. 2 in [1].

The Pierls stress τp is the strength of the material at 0 K. Pierls stress at a reference pres-
sure is obtained from molecular statics simulation for a number of (low) shear moduli G.
A form τp = τp,0(G/G0) is used to scale τp to different shear moduli. Since G is a function
of pressure, scaling to higher pressure is simply done using Eq. 4 in [1]. The two empir-
ical scalings τp = τp,0(G/G0) and Eq. 4 are one (but a minor) source of uncertainty for
vanadium and tantalum. They are routinely used in all branches of material science.

The second expression τ̂(ρ, p) = βbG
√

ρ, where β is a constant of order 1, b is the Burg-
ers vector, G, the shear modulus is pressure dependent, and ρ is the dislocation density.
Dislocation density changes in time but saturates at a value dependent on the strain-rate ε̇

imposed during a ParaDiS run. This too is a minor source of uncertainty in most metals.

The largest source of uncertainty is τ∗(v,θ). It models the work-hardening of a metal due
to large deformations and is estimated from molecular dynamics (MD) simulations. At
low values of v, τ∗ shows complex dependence on θ for vanadium and none for tantalum.
At high θ, the behavior of τ∗ is linear with θ (for tantalum) and approximately linear for
vanadium (this region is called the phonon drag region). However, for practical purposes,
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fidelity is desired in regions where phonon drag is negligible. This is where complex tem-
perature dependence on θ is observed and where MD simulations are performed.

In MD simulations, one initializes a dislocation in a box and imposes a shear stress σe on it.
The position of the dislocation is measured as a function of time and its velocity estimated
by fitting a slope. After initial transients, a slope is observed (see Fig. 6 in [39] and Fig.
8 in [40]). MD runs are repeated at different σe, with the pressure and temperature held
constant. The numerical experiments are then repeated at multiple temperatures. Feasible
MD simulations are typically inaccurate below 300K and consequently the runs are usually
performed for the range 200K – 1100K. Also, in the absence of any other dislocations,
the strain-rates observed in MD are about 5-orders of magnitude larger than what ParaDiS
predicts.

The (v,σe) pairs obtained from MD simulations are fitted using a functional form (Eq.5, 6,
7, 8 in [1]). This functional form has 8 parameters and is the primary source of uncertainty.
However, of these, 3 are related to the phonon drag regime, which is not of much practical
use. However 4 parameters, representing σe − v variation in the temperature-dependent
(non-phonon-drag) region, are critical and the uncertainty in their estimates, to first order,
are most desired. These uncertainties arise from two sources (1) shortcomings of the func-
tional form itself and (2) noise in the MD data. An MD run, repeated multiple times, for
the same pressure, temperature and σe settings will provide multiple (but close) values of
v. The sensitivity of ParaDiS outputs to these 4 parameters is critical. If the uncertainty in
ParaDiS predictions due to shortcomings of the functional form (and noise in MD simula-
tions) are large, then perhaps MD simulations need not be run to very large times or with
large box-sizes (to obtain “converged” values of v).

3.2 Outputs

ParaDiS provides 3 outputs, which are upscaled for use in continuum codes. These are
(1) the stress-strain (σ− ε) relationship (2) the expression for the time evolution disloca-
tion density and (3) dislocation flux evolution. The expression for the time evolution of
dislocation density is

ρ̇ = R
(

1− ρ

ρsat(ε̇)

)
ε̇.

ρsat is obtained by running multiple ParaDiS runs at different values of ε̇ and is fitted by a
ρsat ∼ ε̇a expression (Fig. 4 in [1]). Both R and ρsat(ε̇) are sources of output uncertainty.

3.3 The numerical method

The numerical method is somewhat less relevant to the non-intrusive, sampling-based un-
certainty quantification study contemplated here and is provided to provide context for
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some of the Type IV parameters discussed in Sec. 4. Full details are in [38] and only a
summary is reproduced here.

In a single crystal, dislocations are often modeled as curved lines which may intersect oth-
ers. Numerically, they are modeled as straight-line segments, broken at nodes to accom-
modate curvature, or to represent the intersection of dislocations. Nodes, and segments
connecting them, constitute a dislocation network. In ParaDiS , nodes act as sites which
experience force and are subjected to dynamics; the segments connecting nodes can extend
or shrink (subject to bounds on their length). Nodes can be born or merged/annihilated.
Force on a node is calculated as a local spatial derivative of the energy field; the field itself
is a sum of energy due to long-range elastic distortion and a local core energy, due to lattice
distortion that cannot be explained by linear elastic theory. Elastic force at a node is due
to segments connected to the node, the imposed stress field (if one exists) and the field due
to all other segments. Elastic forces weaken as 1/r i.e., not very fast, and consequently,
cannot limit their effect to a small neighborhood. This leads to global interaction between
nodes and segments, which is mediated by a Fast Multipole Method (FMM). The use of
FMM and the attendant recursive discretization of the domain into a dyadic mesh intro-
duces (1) certain restrictions on how domain decomposition can be performed and (2) a set
of numerical parameters (e.g. order of multipole expansions) that are specific to the FMM.

The force at a node is translated into a velocity using a mobility function / dislocation
velocity submodel (M1 ), obtained by fitting a “constitutive law” to molecular dynamics
(MD) data. The velocity, in turn, is used to update nodal and segment positions using a
backward-Euler time-integrator, with an adaptive time-step. The timestep is kept small
enough such that a segment does not cross over to a new FMM subcell in the midst of the
timestep.
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4 Outline of the uncertainty quantification study

A categorization of ParaDiS inputs was discussed in Sec. 1. These inputs can assume a
range of values, only some of which may be due to a lack of knowledge of their true values.
Often, the range reflects the diversity of uses or operational conditions that a metal/material
may be subjected to. However, the accuracy of the DD model (and its submodels) can vary
significantly throughout these ranges (due to shortcomings of the model itself), leading to
inaccuracies and uncertainty in the predictions. In this section, we outline the ranges over
which these parameters can vary.

4.1 Uncertainties in Type I parameters

Type I parameters are parameters of a material’s bulk properties. They are generally known
with a high degree of precision. For Ta, Poisson ratio, Burger’s magnitude and Young’s
modulus (pois, burgMag, YoungModulus) are known to 4 decimal places i.e., there is
virtually no uncertainty in them and can be dropped from the UQ study. An exception
could be made for Young’s Modulus, since metals are anisotropic and one uses a volume-
averaged value in ParaDiS .

The parameters rc, MobClimb, MobLine are numerical models that remove singularities
in the existing model, preserve stability of the numerical scheme and allow linear elastic
theory to be employed. Their values are fixed by trial and error, at a value that is as close
to zero as possible, but which ensures stability of the model without impacting the model
outputs. Again, these parameters can be dropped from the UQ study.

The parameters MobGlide and MobPieirls are obtained by fitting models to data from
atomistic simulations. These parameters can be estimated to within a certain degree of
accuracy, similar to Type III parameters. In Sec. 4.3 we describe how one estimates uncer-
tainties in ParaDiS parameters (specifically, Type III parameters) that are obtained by fitting
models to microscale simulation data. The same approach could be adopted for these two
parameters.

4.2 Uncertainties in Type II parameters

Three inputs T, ε̇ and G, the shear modulus acting as a proxy for pressure, constitute Type
II parameters. These are set by the operating conditions of the device made of Ta, and are
thus entirely determined by the use-case. If there is interest in explaining the dependence
of ParaDiS outputs on these parameters, they can be modeled as independent, uniform
distributions. The lower and upper bounds for the (T, ε̇,P) parameters are (200,1000)K,
(102,105)sec−1 and (1,30) GPa. P is the pressure.
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Figure 1. Fig. 3 from [1]. Blue and green symbols were read off with a graph paper and used as
MD “observations” in the ParaDiS input characterization.

4.3 Uncertainties in Type III parameters

Type III parameters are subject to “true uncertainty”, i.e., we do not know their values with
absolute certainty. These parameters are used by the dislocation velocity submodel (M1
; also called mobility function) used in ParaDiS . In this section, we characterize these
Type III parameters (6 in number) with a joint distribution. These parameters appear in the
“constitutive law” that describes the velocity of an isolated dislocation in a stress field, and
is obtained via MD simulations. The model is obtained by fitting to MD σe− v data. The
MD “observations” were read off by laying a graph paper on Fig. 3 in [1] (also, Fig. 1).
The characterization is being done only for tantalum.

The model fitted was

τ
∗ = (τq

T + τ
q
D)1/q

τT (v,θ) = α0 exp
(

θ

θT

){
exp
[(

β0 +
θ

βT

)
ln
(

v
c0

+ ṽ0

)]
− exp

[(
β0 +

θ

βT

)
ln(ṽ0)

]}
τD(v,θ) = max

(
(χ0 +χ0,1θ+χ0,2θ2)(v/c0−χ1)√

1− v2/c2
o

,0

)
(1)
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Table 2. Mean, standard deviation and bounds of independent truncated normal prior distributions
for the parameters p.

Parameters β0 βT α0 αT χ0 χ1
mean 0.25 2500 2.5 1500 50 0

std. dev 1.0 10,000 100 10000 30 1
nominal val 0.2757 2548 2.364 1127 37.166 0.03075
lower bound 0.05 500 0.1 500 1 -10
upper bound 0.5 5000 10 5000 100 10

The data consists of τ∗τp, where τp, the Pierls stress at atmospheric pressure is tabulated
in [1]. For tantalum, χ0,1 and χ0,2 are zero (not in the model at all), v0 = 10−9 and q = 5.
The net set of parameters are α0,αT ,β0,βT ,χ0 and χ1. The parameters χ0,1,χ0,2 are for
the phonon-drag region, which is not a practically useful regime. A total of 34 σe− v data
points (10 for 300K and 14 for 700K) were used to estimate the 6 dimensional distribution.

If v is the data vector, the inverse problem is formulated as

v = f(σe;p)+η

where p = {α0,αT ,β0,βT ,χ0,χ1}. By construction, the i.i.d. error η ∼ N(0,σ2
0) and σ0 is

also a parameter to be estimated. Note that the error η is an amalgamation of the “jitter” in
the MD simulations (variation from run to run at the same input parameters) and the model
inadequacy. The parameters were estimated using DRAM [6]

Independent truncated Gaussian priors are used for the 6 parameters. They are in Table 2.
The standard deviation of η, σ0, which is also estimated, has an inverse chi-square distri-
bution as a prior i.e., σ

−2
0 ∼ χ2(10,4).

4.3.1 Estimating β0 and βT

We conjecture that the most important parameters would be β0 and βT , since they appear
inside an exponential. Fig. 2 plots the 1D distribution of β0 and βT (by marginalizing out
the other parameter), when all other parameters are held constant at their nominal values
(see [1]). In Fig 3 we plot the posterior predictive check. We see that the observations are
contained inside the error bars, but the scatter in the posterior predictive test is greater than
the data (most of the MD data lie near the median line). The posterior predictive check,
therefore, fails.
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Figure 2. Marginalized posterior distribution of β0 (top) and βT (bottom).
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Posterior predictive

Figure 3. Posterior predictive tests for 300K (top) and 700K (bottom), when 2 parameters are left
uncertain. The tests do not match the variability in the data. The solid line is the median from the
posterior predictive tests, and the error bars show the 99% credibility interval.
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Figure 4. Pairwise plot of the 6 parameters being estimated.

4.3.2 Estimating six uncertain parameters

We now let all 6 parameters be uncertain and attempt to reproduce the variability in the MD
data. In Fig. 4, we plot marginalized posteriors from the fit. We see significant correlations
between β0 −α0, βT −αT and χ0 − χ1. In Fig. 5, we plot the prior and posterior distri-
butions and in case of β0 and βT , comparison with the 2-parameter inversion. We see that
the posterior distribution for β0 and βT are very different when performed with 2 versus 6
uncertain parameters. This is because of their correlation with α0 and αT . The PDF of αT
shows very little specificity; due to its correlation with βT , the PDF of βT also broadens
beyond the PDF observed for the 2-parameter case. The PDF for α0 is quite broad too;
consequently, the PDF of β0 broadens beyond the 2-parameter study, though not as much
as βT . The nominal values of β0 and βT are very close to the MAP values obtained from
the 2-parameter study.
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In Fig. 6 we look at posterior predictive tests generated using the joint distribution de-
picted in Fig. 4. Again the posterior predictive checks bear out. Further, due to the larger
dimensionality, the 6-parameter model fits better.

In Fig. 7, we plot the model error η ∼ N(0,σ2
o). There is not much difference whether 2 or

6 uncertain parameters are used.

Finally, we address the quality of calibration of the 2-parameter and 6-parameter models
using verification rank histograms [9]. We combine the predictions of the dislocation ve-
locity in Fig. 3 and the observations, sort them and determine the rank the observations
in the sorted set. Since there are 1000 predictions, the ranks of 30 observations should
vary evenly between 1 and 1001, if the model is well calibrated (concentration of the ranks
around the middle of the range indicates an under-dispersed calibration; concentration at
the extremities an over-dispersed calibration). We plot the histogram of ranks, binned
into 30 equally-sized bins, in Fig 8, above, for the two parameter model. Its counterpart,
developed using the 6-parameter model, is plotted in Fig. 8 (below). Since we have 30
observations and 30 equally-spaced bins, an ideal calibration would result in all bins with
one observation each. We clearly see that this is not achieved for the 2-parameter model
(Fig. 8, top) but is more common for the 6-parameter model. While this indicates that
the 6-parameter model is better calibrated, it does not automatically follow that it is more
predictive.

To summarize, the 6 parameters of Eq. 1 can be estimated as distributions from MD data.
Our conjecture that it may be sufficient to calibrate just two parameters (β0,βT ) was shown
to be wrong; Fig. 4 shows significant correlation between these two parameters and others
in Eq. 1. The verification rank histograms show that the 6-parameter model is better cali-
brated. However, the degree of mismatch σo was computed to be about the same in both the
two- and six-parameter model calibrations, indicating that adding an extra four calibration
parameters did not change the predictive skill of the model significantly.
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Figure 5. Prior and posterior distributions for β0, βT , (top) α0, α1, (middle) χ0 and χ1 (bottom).
The nominal values, currently used in ParaDiS , are plotted as vertical lines. Red lines denote the
distributions computed with just (β0,βT ) assumed uncertain (Sec. 4.3.1).
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Figure 6. Posterior predictive tests for 300K (top) and 700K (bottom). We see that we capture the
variability of the MD data. The solid line plots the median of the posterior predictive test and the
error bars cover the 99% credibility interval.
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Figure 8. Verification rank histograms for the 2-parameter model (top) and the 6-parameter model
(bottom). Thirty observations are binned into 30 equally-spaced bins. We clearly see that the
calibration of the 2-parameter model is under-dispersive, whereas the 6-parameter model displays a
good calibration.
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4.4 Designing a computationally inexpensive ParaDiS problem

The need to run ParaDiS for a number of parameter settings requires one to construct a
problem configuration that is small enough to be run repeatedly. This can be achieved
with a small domain, a coarse mesh and a shorter duration over which DD is simulated
(alternatively, a smaller final strain). We can also relax some of the numerical parameters,
at the cost of incurring some numerical errors. This necessarily means forgoing some
accuracy in the simulated physics. Since the data so generated will be fitted with M2 , we
expect that some of these inaccuracies will be reflected in the fit. However, the bulk of the
uncertainty in M2 predictions are expected to be due to physical parameters (Type I, II &
III) rather than the numerical ones (Type IV) which govern how quickly the simulation can
be run.

We have constructed such a configuration for Ta; further, it was used to generated the
ParaDiS results in Sec. 4.6. The domain is a cube, 2.5µ on each side. The domain is
divided into a mesh with 8 cells on each side; these are subsequently refined, if needed.
The time-integrator is a second-order backward-Euler method. Timesteps were nominally
set to 10−14 seconds, but allowed to adapt to as much as 10−6 seconds, if needed. The
multipole expansion is performed only up to second order. Segments lengths are allowed
to vary between 50 and 200 nm. The problem runs on about 64 cores for 3 weeks (including
time spent in queues etc).

However, while we have constructed such a small configuration, a thorough analysis of the
various numerical parameters on the fidelity of the ParaDiS outputs has not been performed.
Prior to using the small configuration in uncertainty quantification studies, we will evaluate
the impact of Type IV (i.e., numerical) parameters on ParaDiS predictions and ensure that
the uncertainties introduced by them are substantially smaller than those due to physical
parameters of ParaDiS .

4.5 Sampling strategy for ParaDiS

Given the discussion in Sec. 2.3, it is clear that a drastic reduction in the dimensionality of
the UQ problem will be required. The dimensionality reduction is also dependent on the
computational resources one has access to. However, we assume about 100–500 ParaDiS
runs may be possible. This, in turn, implies that we may consider 5-10 uncertain ParaDiS
input parameters.

We do not expect any reduction in the Type II parameters which span operational condi-
tions.

Some Type I parameters will be discarded in consultations with experts. Crystallographic
parameters do not vary significantly, whereas those dependent on grain size/distribution
may be affect by manufacturing and metallurgical processes and display a larger degree of
uncertainty. Type I parameters hold the potential for the largest reduction in dimensionality,

30



but the process may be somewhat ad-hoc.

Type III parameters may be discarded based on their ability to affect the predictions of
the mobility function M1 . The discussion in Sec. 4.3 shows that the prediction error
σ0 obtained with two uncertain parameters (β0,βT ) is virtually the same as when all 6
parameters were varied, where significant correlations between parameters were also ob-
served. Performing the same fitting with different pairs of parameters would reveal whether
(β0,βT ) were indeed unique, since a 2-parameter model had the same predictive skill as a
6-parameter one. If so, only (β0,βT ) could be retained as uncertain parameters, with the
rest (the non-sensitive parameters) set to their nominal values.

An alternative method, which would not allow more dimensions, but may allow simpler
sampling, is random sampling e.g., Latin Hypercube or quasi-Monte Carlo. In such a case,
surrogate models would have to be fitted via least-squares regression to ParaDiS output.
The limits on the complexity of the polynomial form being fitted, as discussed in Sec. 2.3,
would also hold. However, a random distribution of sample points would hold other advan-
tages. While a PC (or any polynomial) basis set would provide us with a “trend” model, one
could also fashion a “correction” to the PC/polynomial model predictions by interpolating
from nearly sample points using, for example, kriging or inverse distance weighting. How-
ever, this option can only be evaluated once a few (O(10)) ParaDiS runs have been made
and one has an approximation of the response of ParaDiS to parameter perturbations.

4.6 Estimating model uncertainty in M2

The output from a ParaDiS run is fitted with a model (Eq. 11 in [1]; also called M2 ) which
is reproduced here,

ρ̇ = Rε̇

(
1− ρ

ρsat(ε̇)

)
, (2)

where ε̇ is the strain rate, R is a constant, ρ is the dislocation density and ρsat(ε̇) is its
saturated value (the asymptotic value reached at large strain). The saturated value depends
on the strain rate and the temperature. This simple model is fitted to ParaDiS output only
after the material has started undergoing plastic deformation (which is determined from the
stress-strain curve, also a ParaDiS output).

The fit of Eq. 2 employs “data” that is in fact the output of a deterministic computational
model, namely ParaDiS . The difference between ParaDiS outputs and M2 (Eq. 2) pre-
dictions cannot be ascribed to noise (there is no noise in ParaDiS outputs). It is feasible,
as is done in the literature, to model this difference nonetheless with a statistical model.
However, there is no clear justification of any specific form of this model, as there is no
data-noise that could be employed to inform this construction. This, therefore, introduces
additional modeling artifacts. Moreover, when the Bayesian fitting is done in this man-
ner, the resulting uncertainty in the fitted model parameters, when pushed forward through
this model, typically leads to a pushed-forward posterior density on model outputs that is
narrower than the range of discrepancy with the ParaDiS results. This is due to the noise
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model employed in the fitting, which typically ends up being calibrated to explain a good
portion of this discrepancy, but yet is not part of the upscaled model. A posterior predictive,
resulting from the fitted model combined with the noise model, would in fact be expected
to be consistent with the spread of the data, but not the fitted model itself. Accordingly,
expressing here the desire that the pushed-forward posterior on fitted model outputs be
consistent with the data spread, and hence with the discrepancy from ParaDiS outputs, we
propose the following alternate approach.

We propose to model (R,ρsat) as random variables with an unknown, but parameterized,
joint probability density distribution e.g., one could model the random variable behind this
distribution using polynomial chaos (PC) expansion. The use of a distribution to describe
(R,ρsat) results in a probabilistic prediction of ρ(t) using Eq. 2 i.e., the prediction itself is
a distribution. We would like the (R,ρsat) distribution to be calibrated such that the ρ(t)
distribution fits, and is consistent with the spread of, the data. This requirement forms the
basis for the following model fitting procedure.

To perform a preliminary analysis, we model the distribution of (R,ρsat) as a bivariate
Gaussian i.e. (R,ρsat)∼MV N(µ,Γ), where µ is a vector of size 2 and Γ is a 2×2 covariance
matrix. There are 5 unknowns – the 2 members of µ and the 3 constituents of Γ. Note that
since Γ is symmetric positive definite, Γ12 = Γ21. The 5 unknowns are estimated from
ParaDiS outputs. For a proposed (µ,Γ), we can obtain N samples of (R,ρsat) pairs from the
distribution and trace the evolution ρi(t), i = 1 . . .N, for each sample i. At any time t, the
model predictions form a distribution with a mean ¯ρ(t) and a standard deviation σρ(t).

Let ρParaDiS(t j) be the ParaDiS prediction of dislocation density at time instant t j. Let
ρ̄(t j;µ,Γ) be the mean of the predictions (at time t j) using Eq. 2, corresponding to a distri-
bution of (R,ρsat) obtained from a MVN(µ,Γ). The values of (µ,Γ) are estimated by the
following optimization

minimize
(µ,Γ)

ξ
2(µ,Γ)

subject to (|ξ(µ,Γ)|−σρ)2 ≤ εs

(3)

where ξ2 = ∑ j(ρParaDiS(t j)− ρ̄(t j;µ,Γ))2 and εs is a small number. The optimal values
of (µ,Γ) so obtained can be used to test the goodness of fit of the model, by generating
predictions using Eq. 2 and comparing with ParaDiS output. We demonstrate this below.

We use a ParaDiS simulation corresponding to the conditions described in Sec. 4.4. The
material is Ta, subjected to a strain-rate ε̇ = 105sec−1. Log-transformed ρ, rather than ρ

itself is used in fitting Eq. 2. In Fig. 9 (top), we plot the evolution ρParaDiS(t) (in black) as
well as the stress-strain curve (in blue). The stress-strain curve us used to demarcate the
plastic region (plotted in red). We fit Eq. 2 as a deterministic model to obtain point estimates
of (R,ρsat); its prediction is plotted in green. We see that Eq. 2 provides a good fit, but the
ParaDiS output “wiggles” around it. The optimal point estimates are R = 9.57×1015m−2

and ρsat = 1.54×1014m−2.

Eq. 3 is then used to estimate the 5 variables that constitute (µ,Γ). ρsat is bounded below
at ρ(t = 0), the initial condition. Thereafter, we sample (R,ρsat) pairs from the resulting
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distribution and plot them as a scatterplot in Fig. 9 (bottom). The fitting procedure reveals
the existence of multiple local minima, which, nevertheless are reached at the same value
of Γ22. The log-likelihood values of these minima are all approximately the same. Thus,
we find that only Γ22 can be estimated with any degree of confidence; the rest of elements
of Γ are uncertain and also do not make much of a difference to predictions of ρ using
Eq. 2.

In Fig. 10, we use the fitted distribution MVN(µ,Γ) to generated 100 predictions of ρ(t).
These are plotted with green symbols in Fig. 10 (top). We see that the “fan” of predictions
using Eq. 2, with (R,ρsat) modeled as a bivariate Gaussian, spans the ParaDiS output,
plotted in red. In Fig. 10 (bottom) we plot the distribution of predictions ρ(t) at 6 different
points in time (each with a different color). The dashed lines are the ParaDiS results. We
see that there is no clear trend - the probabilistic predictions are neither consistently below
nor above the ParaDiS values. Rather, we see a correlated behavior, where the fitted model
first overpredicts (early time and lower ρ values), then draws close to the ParaDiS values
(blue and red curves), followed by more over-prediction (green and magenta curves) and
finally an under-prediction (bold magenta). This meandering of the curve about the middle
of the distribution is also seen in Fig. 10 (top).

To summarize, one can model (R,ρsat) as a distribution and use Eq. 2 for predicting ρ(t).
We have demonstrated a method to estimate this distribution, by modeling it as a bivariate
Gaussian; other models can also be adopted and fitted using the same procedure. We see
that the distribution is narrow and is sufficient to “cover” the shortcomings of Eq. 2 when
fitted to ParaDiS data, inasmuch that the distribution of Eq. 2 predictions contain the data
used for fitting. Note that this distribution is derived from one setting of ParaDiS inputs i.e.,
it does not reflect any input uncertainty on the part of ParaDiS . The uncertainty captured
by the (R,ρsat) distribution is purely model uncertainty i.e., it reflects the shortcomings of
M2 (Eq. 2) in representing ParaDiS outputs.

4.7 Execution plan and deliverables

The execution of a ParaDiS UQ study would consist of the following steps:

1. Dimensionality reduction: The first step of the study would target dimensionality
reduction. Insensitive Type I parameters would be identified in consultation with
experts. Sensitivity analysis of the dislocation mobility function, (after being fitted
to MD data) will be used to reduce the dimensionality of M1 . We will aim for 5–10
uncertain parameters.

2. Sampling design: The ParaDiS parameters will consist of a mixture of independent
parameters (Type I and II) and correlated ones (Type III). While this poses no prob-
lems in case of random sampling, designing a CC grid with correlated parameters
is expected to be a challenge and require significant resources. This may also be an
argument against adopting sparse quadratures for our sampling study.
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Figure 9. Data for fitting Eq. 2 and the resulting fit. Top: ParaDiS output in black (plotted against
the left Y-axis) and the stress-strain curve (blue; plotted against the right Y axis), showing the
plastic region. The red region is the plastic-deformation data used for fitting Eq. 2. The green line
is the fitted model, using optimal values of R,ρsat . Bottom left: (R,ρsat) samples from the fitted
distribution. We see that there is very little uncertainty in the fit of M2 ; the distribution is very
narrow, but (R,ρsat) clearly assume correlated values. Bottom right: A zoom of the fitted (very
narrow) Gaussian.
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Figure 10. Predictions with the fitted model. Top: Using values of (R,ρsat) sampled from the
distribution plotted in Fig. 9 (bottom), we prediction an ensemble of 100 ρ̇ evolutions, plotted in
green. The ParaDiS output is plotted in black. Bottom: Distribution of predictions ρ(t) (arising from
Eq. 2 and (R,ρsat) ∼ MVN(µ,Γ)) at 6 different points in time (each corresponding to a different
color). The dashed lines are the ParaDiS results. The black plot is at the earliest time, the bold
magenta at the latest time.
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3. Execution of the sampling design: This is expected to be the most time-consuming
part of the study, as it involves nursing O(100) ParaDiS executions to conclusion and
fitting M2 to their individual outputs.

4. Construction of the surrogate model: The steps described above will results in dis-
tributions of (R,ρsat), with each distribution corresponding to a ParaDiS run. These
distributions may be represented by a (µ,Γ) set, if a multivariate Gaussian distri-
bution is found to be adequate, or a set of PC coefficients, if we take recourse to
PC-based modeling of the joint (R,ρsat) distribution. Surrogate modeling will take
the form of establishing polynomial maps between the 5–10 unknown parameters
and the PC coefficients (or (µ,Γ)). Depending upon the complexity of the resulting
surface, interpolation (as described in Sec. 2.3) may also be required.

5. Global sensitivity analysis and UQ studies: The final step of the study would be
to use the surrogate to establish (1) the most sensitive parameters, (2) the uncertain
outputs, at specified Type II (“operational”) parameters values, by marginalizing over
the uncertain parameters. This would yield a distribution over (R,ρsat), which are
input parameters for M2 , a submodel for ALE3D. Its use in an ALE3D sensitivity
study is, thereafter, conceptually simple.

A UQ study of ParaDiS would yield two tangible deliverables:

1. An approach for performing UQ studies on complex models: An UQ study on Par-
aDiS would design and demonstrate how UQ investigations could be performed on
complex and computationally expensive models with numerous inputs. The method
would be general, treating a mixture of independent and correlated model inputs (e.g.,
Type III parameters) and addressing model predictions which were probabilistic i.e.,
model outputs are probability densities. A key deliverable of this approach would be
the sampling design necessary to cover the 10-dimensional input space of ParaDiS .

2. A surrogate model for the upscaling toolchain: The sampling study would establish
a map between the input parameters of ParaDiS and the distribution of (R,ρsat) e.g.,
if we were to retain out multivariate Gaussian model for the distribution of (R,ρsat),
the mapping would target the 5 constituents of (µ,Γ). A surrogate model could relate
the sensitive inputs to the 5 outputs; alternatively, one could marginalize out the Type
I and Type III parameters to obtain a relationship between Type II parameters (“the
operational conditions”) and the resulting distribution of (R,ρsat).

A surrogate model would have many practical uses. Primarily, one would use it to perform
a sensitivity analysis, to establish the input parameters that most impact outputs; this would
subsequently guide experiments or MD simulations that would be instrumental in reducing
parametric uncertainty.

The approach, on the other hand, could also be used to create competing upscaled surro-
gate models, predicated on competing mobility functions M1 . The surrogates could then
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be used to perform model selection i.e., pick the mobility law most supported by evidence
by comparing with data obtained from anvil or explosive tests. A computationally inexpen-
sive surrogate would allow the model selection to be performed rigorously i.e., by means
of Bayes factors [7] or by comparing the quality of predictions versus data [8, 9]. Both
these methods require multiple invocations of the surrogate model, and hence the need for
computational celerity.
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5 Computational issues and resources

We conclude with a discussion of the computational resources needed for this UQ study.

• Estimation of the impact of Type IV parameters: The impact of Type IV (numerical)
parameters of ParaDiS will be gauged, with a view of ensuring that their impact is
smaller than the other uncertain parameters. Since there are 12 such parameters,
O(10) runs will be required to accomplish this task. We will simply run ParaDiS (the
configuration described in Sec. 4.4) at parameter setting half their nominal value to
estimate the impact.

• Executing the sampling study: In this case, we expect that the computational re-
sources will determine the number of ParaDiS runs that can be executed. We estimate
that we can execute 5 runs a month; each run will execute on 64 processors. Thus
over 2 years (the recommended duration of the UQ study), we expect to obtain about
120 ParaDiS runs. This is equivalent to 4–6 million CPU hours.

• Type of computers required: There are no specific requirements on the type of com-
puters required to execute the UQ study. If access to a large number of cores is
feasible, they will be used to simply execute more ParaDiS sample runs concurrently.

• Team structure: Executing the UQ study will require a tight collaboration with the
LLNL ParaDiS team. Since the UQ study will target Ta as the test material, it will
have to be performed with the LLNL version of ParaDiS , which will also have to be
ported to the various machines where the numerical experiments will be performed.
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6 Summary

This report outlines an UQ study of ParaDiS , a dislocation dynamics simulator, being de-
veloped in LLNL. ParaDiS simulates the evolution of dislocations (and related physical
outcomes, like plastic strains and strain-hardening) in a crystal when subjected to a stress
or strain field. It uses submodels, the most important of which is the dislocation mobility
function,M1 . It is derived from molecular dynamic simulations and contains uncertain
parameters which are ParaDiS inputs. ParaDiS predicts the time evolution of dislocation
density, which is fitted with an upscaling model M2 , and used in continuum simulators like
ALE3D. ParaDiS has inputs that are classified as (1) material parameters, (2) operational
parameters (e.g., temperature, pressure etc.), (3) mobility function parameters and (4) nu-
merical parameters.There are 20 physical parameters and 12 numerical ones. ParaDiS is
expensive and fully resolved runs take O(107) CPU-hours.

Tantalum will serve as the test metal for the purposes of the study.

The UQ study seeks to establish the uncertainties in M2 predictions due to uncertainties in
ParaDiS input. Due to the high-dimensionality of the input space and the huge computa-
tional expense of ParaDiS , it is clear that (1) the study has to be performed using a less
expensive configuration and (2) the UQ study can only be done for a handful of param-
eters. In Sec. 4.4, we describe a computationally inexpensive problem configuration that
can be completed in 3 weeks of runtime on 64 cores. In Sec. 4.5 we discuss how the 20-
dimensional input parameter space may be reduced to 5–10 for the UQ study and identify
some of the parameters that need to be retained. The number of parameters to be retained
in the UQ study was arrived at by our estimation that one could execute 100–200 ParaDiS
runs over a period of 2 year; these runs would be sufficient to resolve the dependence of
ParaDiS outputs only if the number of independent inputs were severely restricted (see
discussion in Sec. 2.3)

The set of ParaDiS outputs will be fitted with M2 . In Sec. 4.6, we show that M2 is incapable
of reproducing ParaDiS outputs unless we assume its parameters to be random variables.
In the same section, we demonstrate a method, based on multivariate Gaussian modeling
of their distribution, by which the random variables may be estimated from ParaDiS data.
We also outline a second one, based on polynomial chaos modeling of M2 ’s parameters,
in case the first proves inadequate.

We expect that the study will require 4–6 million CPU-hours, on modest to large platforms
(due to the sheer number of runs that we require). We recommend that the team performing
the UQ study be tightly integrated with LLNL. Since Ta is the metal of interest, the study
will require the use of the LLNL (rather than the public domain version) of ParaDiS .
Further, significant porting effort will be required.

The UQ study will deliver an approach for performing UQ studies on computationally
expensive models, with ParaDiS as an example. The approach can be also be used to
discriminate between competing version of ParaDiS e.g., if they use different submodels.
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It will also deliver a surrogate for ParaDiS which can then be used for validation studies
(against anvil and explosive test data) or for performing sensitivity analysis under different
operational (temperature, pressure or strain-rate) conditions.
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